Chiral dynamics in transverse nucleon structure

C. Weiss (JLab), Chiral Dynamics 2012, 08-Aug-12

 $b \sim 1/M_\pi$ new regime for $\chi {\rm PT}$ universal, model-independent

Chiral and non-chiral components identified by spatial size

Connection with GPDs, peripheral ep/pp processes

Parton picture of nucleon structure

Wave function description

Transverse densities from elastic FFs

Connection with GPDs

Chiral component of transverse density

Invariant χ PT: Spectral function ${
m Im}\ F_{1,2}(t)$ Strikman, CW, PRC82 (2010) 042201

Light–front χ PT: πN wave functions C. Granados, CW; in progress

Chiral vs. non-chiral component

Spectral analysis: Vector mesons Miller, Strikman, CW, PRC84 (2011) 045205

Effect on low-t elastic FFs Simple estimates only!

• Chiral dynamics in parton densities x-dependent transverse size of nucleon Peripheral high-energy ep/pp scattering

Nucleon structure: Parton picture

QCD vacuum not empty

Strong non-perturbative gluon fields of size $\ll 1 \ fm \leftarrow \text{Lattice QCD, analytic models}$

Chiral symmetry breaking: $\bar{q}q$ pair condensate, π as collective excitation

Nucleon at rest

 $\langle N|J_{\mu}|N
angle$ from Euclidean correlation functns

No concept of particle content!

Cannot separate "constituents" from vacuum fluctuations

• Fast-moving nucleon $P\gg \mu_{\rm vac}$

Closed system: Wave function, Gribov, Feynman variable particle number, x_i , k_{Ti}

Current operators "count" particle nr × charge

Physical properties:
Longitudinal momentum densities

PDFs

Transverse distributions

Orbital motion

TMDs

Alt. view: Observer moves with velocity $v \to 1$. Light-front quantization, frame-independent Brodsky et al.

Nucleon structure: Transverse densities

Current matrix element parametrized by invariant form factors

$$\langle N'|J_{\mu}|N
angle \;
ightarrow \; F_1(t), F_2(2)$$
 Dirac, Pauli

• Transverse charge density $t = -\Delta_T^2$

$$F_1(t) \; = \; \int\! d^2b \; e^{i{f \Delta}_{
m T} {m b}} \;
ho(b)$$
 2D Fourier

Transverse density of charge in fast–moving nucleon **b** displacement from transverse C.M.

Proper density for relativistic system

$$\rho(b) = \sum_{N} \text{charge } \int dx \; \psi^*(x, \boldsymbol{b}/\bar{x}, ..) \psi(x, \boldsymbol{b}/\bar{x}, ..)$$

Cumulative charge of constituents at transv. position $m{b}$ Breit frame distribution not density: Miller 07

Reduction of GPDs

$$\rho(b) = \int dx \, f_{q-\bar{q}}(x, \boldsymbol{b})$$

Transverse size in hard exclusive processes universal, process—independent

Nucleon structure: Densities from FF data

$$\rho(b) = \int_{0}^{\infty} \frac{d\Delta}{2\pi} \Delta J_0(\Delta b) F_1(t = -\Delta^2)$$

 Nucleon transverse charge density from spacelike form factor data

Experimental and incompleteness errors estimated Venkat, Arrington, Miller, Zhan 10

Recent low-|t| data incorporated MAMI: Vanderhaeghen, Walcher 10

Neutron density positive at distances $b\sim 0.5-1\,\mathrm{fm}$ Miller 07. Different theoretical explanations

Large—distance behavior?

 $b \to \infty$ dominated by chiral dynamics: universal, model-independent

At what distances is the chiral component relevant?

Can it be seen experimentally?

Transverse density: Dispersion representation

Isovector: $\pi\pi$, ρ , ρ' ... ω , ϕ , KK,...

Dispersion representation of form factor

$$F_1(t) = \int_{4m_{\pi}^2}^{\infty} \frac{dt'}{t' - t - i0} \frac{\text{Im } F_1(t')}{\pi}$$

Spectral function $\operatorname{Im} F_1(t')$ describes "process" current \to hadronic states $\to N\bar{N}$

 ${
m Im}\ F_1(t')$ from form factor fits and theory: $\chi {\sf PT}$ near threshold, dispersion rels, pQCD $t \to \infty$ Höhler et al. 76; Belushkin, Hammer, Meissner 06

• Transverse density

$$\rho(b) = \int_{4m_{\pi}^{2}}^{\infty} \frac{dt}{2\pi^{2}} K_{0}(\sqrt{t}b) \operatorname{Im} F_{1}(t)$$

 $K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distance b selects masses $\sqrt{t}\sim 1/b$: "Filter" Cf. Borel transformation in QCD sum rules. Strikman, CW 10

Peripheral $\rho(b) \longleftrightarrow \text{low-mass hadronic states}$

Chiral component: Spectral function

$$ho^V(b) \propto rac{\exp(-2M_\pi b)}{(2M_\pi b)^3} imes \left(1 + \operatorname{terms} rac{M_N^2}{M_\pi^3 b} + \ldots
ight)$$

Limits $b \to \infty$ and $M_\pi/M_N \to 0$ do not commute: Do not expand in M_π/M_N

• Spectral function near threshold $t-4M_\pi^2 \sim \text{few}\,M_\pi^2$ from χPT $_{\text{Isovector}}$

Relativistic chiral Lagrangian Becher, Leutwyler 99

Heavy-baryon expansion not convergent due to subthreshold singularity Becher, Leutwyler 99; Kaiser 03

 \bullet Asymptotic behavior for $b\to\infty$ $_{\rm Strikman,\ CW\ 10}$

Yukawa tail with range $2M_\pi$

Pre-exponential factor strongly varying

ullet Include intermediate Δ

Large coupling!

Large- N_c limit of QCD: $g_V \sim N_c^0$ requires cancellation between N and Δ Cohen 95

$$M_N, M_\Delta \sim N_c$$
 $M_N - M_\Delta \sim 1/N_c$ degenerate

Chiral component: Partonic formulation

Equivalence of invariant and partonic formulation of $\chi {\rm PT}$

Partonic representation of chiral component

$$\rho^{V}(b) = \int_{0}^{1} dy \left[\frac{2}{3} f_{\pi N}(y, b) - \frac{1}{3} f_{\pi \Delta}(y, b) \right]$$

 $f_{\pi B}(y,b)$ pion longitudinal momentum and transverse coordinate density Strikman, CW 09: Chiral contributions to parton densities

$$y \sim M_\pi/M_N$$
 parametrically small

Overlap of light–front wave functions

$$f_{\pi N}(y, b) = \sum_{L=0,1} \psi_{\pi N}^{L*}(y, b/\bar{y}) \psi_{\pi N}^{L}(y, b/\bar{y}) + \delta(y) \text{ term}$$

Orbital angluar momentum of πN system! Also magnetic density: $\Delta L=1$. Granados, CW 12

ullet Contact terms $\delta(y)$ "Light-front zero modes"

Represent effect of high-mass intermediate states in time-ordered PT Granados, CW 12

Coefficient $(1-g_A^2)$: Compositeness of nucleon

Chiral component: Numerical evaluation

Numerical evaluation

Contact term $\delta(y)$ in πN contributes < 10% at $b>1\,\mathrm{fm}$

 $\pi\Delta$ negative, suppressed at large b

Compare with "non-chiral" density

Simple estimate: ρ meson pole

Chiral component dominates only at $b>2\ {\rm fm}$. . . surprisingly large!

ullet Impact parameter b as new way of identifying chiral component

Model-independent!

b observable in exclusive processes, objectively defined \leftrightarrow Breit frame radius

Chiral component: Spectral analysis

Empirical isovector spectral function

Near—threshold $\pi\pi$ from chiral dynamics ρ region from $\pi\pi$ phase shifts Höhler 76 High—mass continuum from form factor fits Belushkin, Hammer, Meissner 07

 Spectral analysis of isovector density Strikman, CW 10; Miller, Strikman, CW 11

Near-threshold $\pi\pi$ relevant only at $b>2~{\rm fm}$

Intermediate $b=0.5-1\,\mathrm{fm}$ dominated by ρ , with $\sim 10\%$ correction from higher masses "Vector dominance" quantified

Isoscalar density

 ω dominates at $b > 1.5 \, \mathrm{fm}$.

Large cancellations between ω and higher–mass states at $b=0.5-1\,\mathrm{fm}$

Model-independent identification of chiral component, "vector dominance" in QCD

Chiral component: Effect on form factors Simple estimates!

Dispersion fit Belushkin, Hammer, Meissner 07 New data from Bates, MAMI, JLab

Moments of transverse charge density

$$\langle b^2 \rangle = \int d^2b \ b^2 \rho(b) = 4 F_1'(0)$$

 $\langle b^4 \rangle = 32 F_1''(0)$

• Contribution of chiral component isovector

$$\langle b^2
angle_{
m chiral} ~pprox ~0.2 imes \langle b^2
angle_{
m fit} ~{
m small}$$
 $\langle b^4
angle_{
m chiral} ~pprox ~1.5 imes \langle b^2
angle_{
m fit}^2 ~{
m sizable}$

Chiral component should be visible in "unnatural" second and higher derivatives of FF at $Q^2=0$ Can we extract it?

- Analyticity of form factor fit is essential Needs dispersion analysis: Belushkin et al. 07
- \bullet Affects extrapolation to $t\to 0$ CLAS/PRIMEX 12 GeV experiment at ${\it Q}^2=10^{-4}-10^{-2}{\rm GeV}^2$ PR12-11-106 Gasparian et al.

Parton distributions: Chiral component

 \bullet Large—distance component of quark/gluon densities at $b\sim M_\pi^{-1}$ and $x< M_\pi/M_N$ Strikman, CW PRD69:054012,2004; PRD80:114029,2009

Model-independent, calculable: "Yukawa tail"

Strong in isoscalar quarks and gluons, suppressed in isovector $\bar{d}-\bar{u}$

Small fraction of total number: Most partons sit at distances $b \lesssim 0.5 \, \mathrm{fm}$

• Increase of nucleon's transverse radius below $x \sim M_\pi/M_N$

Larger for quarks than for gluons!

Parton distributions: Peripheral hard processes

suppressed!

• Hard exclusive process on peripheral pion Strikman, CW PRD69:054012,2004

$$k_\pi^2 \sim M_\pi^2$$
 quasi-real Requires $x \ll M_\pi/M_N \sim 0.1$

• Kinematics with $p_T(\pi) \gg p_T(N)$ suppresses production on nucleon

$$F_{\pi NN}(t)$$
 softer than $\mathrm{GPD}_{\pi}(t)$

• Probe gluon GPD in pion at $|t_{\pi}| \sim 1 \, {\rm GeV}^2$

Fundamental interest

Moments calculable in Lattice QCD

ullet Requires detection of forward nucleon and moderate— p_T pion

Feasible with Electron-Ion Collider EIC

Direct probe of chiral component of nucleon's partonic structure!

Summary

• Transverse densities relate elastic FFs to universal partonic structure

Impact parameter b "observable" unlike Breit frame radius

Dispersion representation connects partonic structure at given b with hadronic exchange mechanisms

Chiral component of transverse densities at large b

Chiral expansion justified by $b \sim M_\pi^{-1}$. . . new arena for $\chi {\sf PT}$

Equivalence of invariant and light–front formulations of χPT

Chiral and non-chiral components identified by spatial size

Chiral component dominant only at large $b\gtrsim 2\,\mathrm{fm}$

• Dispersion fits to FF data contain much interesting information

Correct analyticity crucial for studying peripheral densities

Should be updated with new data JLab 6/12 GeV

Many interesting extensions

Current vs. charge densities, x-dependent structures

Supplementary material

Spectral analysis: Isoscalar density

Isoscalar spectral function

 ω exhausts strength below $1~{\rm GeV}^2$ Non-resonant 3π negligible

Large negative strength above $1 \, \mathrm{GeV}^2$, dynamical origin unclear ϕNN coupling $\leftrightarrow s\bar{s}$ content of nucleon

High—mass continuum from form factor fits Belushkin, Hammer, Meissner 07

 Spectral analysis of isoscalar density Miller, Strikman, CW 11

> ω dominates at $b>1.5\,\mathrm{fm}$ Fit uncertainty in ωNN coupling $\pm15\%$

Large cancellations between ω and higher–mass states at $b=0.5-1\,\mathrm{fm}$

Impact of future form factor data

Sensitivity to ωNN coupling broadly distributed at spacelike $|t| \lesssim 1~{\rm GeV}^2$ Does not require measurements at externely small |t|

Spectral analysis: Neutron density

• Spectral analysis of neutron density

 $\omega - \rho$ alone gives large positive density!

Substantially reduced by higher–mass states in isoscalar spectral function

Neutron form factor measurements can help to determine isoscalar spectral function $\to \phi NN$ coupling, $s\bar{s}$ in nucleon